Equilibrium fluid-solid coexistence of hard spheres.
نویسندگان
چکیده
We present a tethered Monte Carlo simulation of the crystallization of hard spheres. Our method boosts the traditional umbrella sampling to the point of making practical the study of constrained Gibbs' free energies depending on several crystalline order parameters. We obtain high-accuracy estimates of the fluid-crystal coexistence pressure for up to 2916 particles (enough to accommodate fluid-solid interfaces). We are able to extrapolate to infinite volume the coexistence pressure [p(co)=11.5727(10)k(B)T/σ(3)] and the interfacial free energy [γ({100})=0.636(11)k(B)T/σ(2)].
منابع مشابه
Phase Behavior and Structure of Binary Hard-Sphere Mixtures
By integrating out the degrees of freedom of the small spheres in a binary mixture of large and small hard spheres, we derive an explicit effective Hamiltonian for the large spheres. Using the two-body (depletion potential) contribution to this effective Hamiltonian in simulations, we find stable fluid-solid and both metastable fluid-fluid and solid-solid coexistence in a mixture with size rati...
متن کاملPhase behavior of hard spheres with a short-range Yukawa attraction.
The phase diagram of a system consisting of hard spheres with an attractive Yukawa interaction is computed by Monte Carlo simulations. Upon decreasing the range of attraction, we find the following scenarios: (a) a stable fluid-fluid and fluid-solid transition, a triple point with fluid-fluid-solid coexistence, and a metastable isostructural solid-solid transition (b) a fluid-fluid and isostruc...
متن کاملEquilibrium phase behavior of polydisperse hard spheres.
We calculate the phase behavior of hard spheres with size polydispersity, using accurate free energies for the fluid and solid phases. Cloud and shadow curves are found exactly by the moment free energy method, but we also compute the complete phase diagram, taking full account of fractionation. In contrast to earlier, simplified treatments we find no point of equal concentration between fluid ...
متن کاملDetermination of the melting point of hard spheres from direct coexistence simulation methods.
We consider the computation of the coexistence pressure of the liquid-solid transition of a system of hard spheres from direct simulation of the inhomogeneous system formed from liquid and solid phases separated by an interface. Monte Carlo simulations of the interfacial system are performed in three different ensembles. In a first approach, a series of simulations is carried out in the isother...
متن کاملFluid-solid transitions on walls in binary hard-sphere mixtures
– We present measurements and theory of a fluid-solid phase transition at a hard, flat wall in a two-sized hard-sphere mixture. With particle concentrations well below the level for bulk phase separation, a fluid monolayer (enriched in the larger spheres) forms at the wall. At slightly higher concentrations, the wall-fluid freezes into a wall-solid phase which coexists with the bulk fluid. Meas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 108 16 شماره
صفحات -
تاریخ انتشار 2012